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Abstract. A numerical study of the displacement of viscoplastic fluids in capillary tubes by air is performed. This situation
is encountered in many applications such as flow through porous media in enhanced oil recovery and coating flows. In these
processes it is important to understand the mechanism of liquid displacement and to determine the amount of liquid left behind
adjacent to the wall. The non-Newtonian fluid behavior alters the flow kinematics and changes the amount of mass left at the
tube wall as compared to the Newtonian case. The numerical solution is obtained by solving the conservation equations of
mass and momentum, via the finite volume method, and using the volume of fluid method to model the multiphase flow. In
order to model the viscoplastic behavior of the liquid, the Generalized Newtonian Liquid constitutive equation was employed,
in conjunction with a recently proposed viscosity function (de Souza Mendes and Dutra, 2004). Two rheological parameters
appear in the dimensionless form of this equation, both of them obtained experimentally via least squares data fit. One pa-
rameter is the power-law index and the other one is the jump number, which gives the size of the shear rate jump that occurs
as the stress reaches the yield stress while the viscosity undergoes a sharp decrease. The numerical results are obtained for
unsteady inertialess flow. Velocity and stress fields, as well as the interface shape and the amount of mass left attached to the
wall, are obtained for different combinations of flow and rheological parameters. It was observed that the thickness of the film
of liquid left on the wall increases asymptotically with the flow rate and with the power-law index. Also, it is shown that it
slightly decreases with the jump number.
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1. Introduction

In this work, the displacement of a viscoplastic liquid by air inside a tube is analyzed numerically. This situation is
found in several industrial applications, such as coating flows and flow through porous media. In these processes, it is
important to determine the amount of liquid that remains adjacent to the wall. Fairbrother and Stubbs, 1935 and Taylor,
1961 determined experimentally the mass fraction deposited on the tube wall for a Newtonian inertialess flow. The mass
deposited on the tube wallm is given by:

m =
U − ū

U
= 1−

(
Rb

R

)2

(1)

whereU is the velocity of the tip of the interface,̄u is the mean velocity of the viscoplastic liquid far ahead the air-
liquid interface,R is the tube radius andRb is the bubble radius, as it is shown in Fig. 1. The results obtained by Taylor,
1961 were later expanded by Cox, 1962, and show that the mass deposited on the tube wall increases with the Capillary
number (Ca ≡ µU/σ, whereµ is the viscosity andσ is the surface tension) until an asymptotic value of 0.60, when the
capillary number reaches a value of 10.

Leeet al., 2002 and Quintellaet al., 2005 analyzed numerically the displacement of viscoelastic fluids by air, using
the finite element method. The first ones analyzed the flow between parallel plates, while Quintellaet al., 2005 analyzed
the flow in capillaries. Giavedoni and Saita, 1997 performed a literature review concerning the theoretical modelling of
gas-liquid displacement between parallel plates. Goldsmith and Mason, 1963, Teletzkeet al., 1988, Bretherton, 1961 and
Soareset al., 2005 studied the liquid-liquid displacement inside tubes. The results obtained by Soareset al., 2005 show
the effects of different parameters on the interface shape and on the mass deposited on the wall.

In this work, a numerical analysis of the displacement of a viscoplastic liquid by air inside a tube, is performed. All
the results were obtained for low Reynolds numbers and negligible surface tension. The effects of rheological and flow
parameters on the mass deposited at wall, and on the flow pattern were obtained and discussed.
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Figure 1: The geometry

2. Mathematical modeling

The flow under study is shown in Fig. (1). The multiphase flow was modeled by the volume of fluid method (VOF),
that solves a set of mass conservation equations and obtains the volume fraction of each phaseαi through the domain,
which should sum up unity inside each control volume. Therefore, if:

• αi = 0 - the volume does not contain the phase i;

• αi = 1 - the volume contains only the phase i;

• 0 < αi < 1 - the volume contains the interface.

In this study, only two phases are present. Both fluids, air and the non-Newtonian liquid, are assumed incompressible.
The multiphase flow was solved obtaining the solution of the conservation equations for a transient and laminar flow
regime. The properties appearing in the transport equationsφ, are given by:

φ = α2φ2 + (1− α2) φ1 (2)

The interface between phases is obtained by the solution of continuity equation for the volume fractionα1:

∂α1

∂t
+ div (α1v) = 0 (3)

wherev is the velocity vector. The volume fraction equation for the secondary phase 2 is obtained from the following
constraint equation:

α1 + α2 = 0 (4)

The momentum conservation equations for the mixture are:

∂ (ρv)
∂t

+ div (ρvv) = −grad p + div
[
η

(
gradv + gradvT

)]
+ ρg (5)

whereρ is the density,p is the pressure,g are the components of the gravity acceleration vector andη = (α1η1+α2η2)
is the viscosity of the mixture. In the problem analyzed,η2 is the air viscosity andη1 is the viscosity of the viscoplastic
fluid, given by the model proposed by Souza Mendes and Dutra (2004), the SMD equation:

η = (1− exp (−η0γ̇/τ0))
(

τ0

γ̇
+ Kγ̇n−1

)
(6)

In this equation, four rheological parameters appear: the plateau of constant viscosity for lower strain ratesη0, the yield
stressτ0, the behavior indexn, and the consistency indexK. It is worth mentioning that in this equation, when the stress
reaches the yield stress, there is a sharp increase of shear rate with a constant stress. The shear rate jumps fromγ̇0 ≡ τ0/η0

to a much larger valuėγ1 ≡ (τ0/K)1/n.
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2.1. Dimensionless analysis

The governing dimensionless parameters were obtained choosingγ̇1 as the characteristic shear rate andτ0 as the
characteristic shear stress. Therefore,γ̇∗ = γ̇/γ̇1 and τ∗ = τ/τ0. It is also interesting to define a new rheological
dimensionless parameter, the Jump numberJ , which gives a measure of the shear jump that occurs whenτ = τ0. Then,

J ≡ γ̇1 − γ̇0

γ̇0
=

η0τ
1−n

n
0

K1/n
(7)

Therefore, the dimensionless viscosity function,η∗ = τ∗/γ∗, is given by:

η = (1− exp [− (J + 1) γ̇∗])
(

1
γ̇∗

+ γ̇∗n−1

)
(8)

It is worth mentioning that whenJ → ∞ the SMD equation approaches the Herschel-Bulckley model Birdet al., 1987.
The dimensionless conservation equations are given by:

∂α1

∂t∗
+ div (α1v∗) = 0 (9)

∂v∗

∂t∗
+ div (v∗v∗) = −grad P ∗ +

1
Re

div
[
η∗

(
gradv∗ + gradv∗T

)]
(10)

In the above equations, the dimensionless variables are defined as following:

t∗ = tγ̇1 x∗ =
x

R
r∗ =

r

R
v∗ =

v
γ̇1R

(11)

The dimensionless modified pressure is given by:

P ∗ =
p

ρ(γ̇1R)2
− gr∗sinθ

γ̇2
1R

(12)

The Reynolds number is defined as

Re =
ργ̇1R

2

ηc
(13)

whereηc is the characteristic viscosity, calculated at the characteristic shear rate,γ̇1. Another important dimensionless
parameter is the Capillary number, which is here defined as

Cap =
τ0R

σ
(14)

whereσ is the surface tension.

3. Numerical solution

The numerical solution of the governing equations was obtained using the Fluent software. The finite volume method
(Patankar, 1980) was used to obtain the conservation equations discretization, using a second-order upwind scheme for
the momentum equation and a first-order upwind scheme for the volume fraction equation. The unsteady terms were
discretized using an implicit fomulation. Staggered velocity components were employed to avoid unrealistic pressure
fields and the PISO algorithm (Fluent-User’s-Guide, 2006) was used, in order to couple the pressure and velocity. The
boundary conditions were the no slip condition at tube wall, symmetry at tube center, constant inlet velocity and fully
developed flow condition at outlet boundary. As the initial condition it was assumed that the tube was completely full of
the viscoplastic liquid, and at the entrance the volume fraction of air was set equal to unity.

A non-uniform mesh was used in the numerical simulation, with 202 control volumes in the axial direction, and 40
control volumes in the radial direction. Some mesh tests were performed to validate the numerical solution and the mesh
used. The Newtonian results were compared to the results obtained by Taylor, 1961. The error obtained for the mass
deposited at the tube wall (e = |mnum−mTaylor|/mTaylor) was equal to 2%. The results for non-Newtonian cases were
compared to results obtained with more refined meshes. The difference in the mass deposited at the tube wall, between
the mesh used and a302× 60 mesh, was equal to 3%. Another important parameter in the numerical solution is the time
step. Some instabilities were observed for higher values of time steps. In the results obtained in this work, the time steps
used varied from10−4 to 10−5 s. However, it is worth mentioning that the value of mass deposited has shown to be very
sensitive to the numerical solution parameters. In some cases, a reliable solution could only be achieved with very low
time steps and very strong convergence criterium, leading to extremely large CPU times.

All the numerical results were obtained for negligible surface tension, orCap → ∞. Convergence problems were
observed for finite capillary numbers.
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4. Results and discussion

All the numerical solutions were obtained for a ratio of tube diameter and tube length equal to 20, since the flow pattern
had became invariant before this point. The effects of some governing parameters, on flow pattern and on the amount of
mass deposited at wall, were investigated. All the results were obtained for low Reynolds numbers and infinite Capillary
numbers. Its worth mentioning that the dimensionless mean entrance velocity (u∗) and the dimensionless developed wall
shear stress (τ∗w) are equivalent parameters. The effects of these parameters and of the rheological parametersJ andn
were investigated, and are presented below. The values for the rheological parameters used in the simulations were chosen
based on real rheological data for a Carbopol aqueous solution.

4.1. Flow pattern results

The flow pattern can be analyzed with the aid of Figs. (2)-(8), which show some results of the dimensionless velocity,
strain rate, and shear stress fields. Only the region of the domain that contains the bubble front is shown. The black line
appearing in these figures indicates the interface between the fluids, as it is marked in Fig. (2). The interface line was
defined as the line whereα1 = α2 = 0.5. Figure (2) shows the velocity magnitude field forJ = 1.5× 106 andn = 0.41,

air
interface

liquid

Figure 2: Velocity magnitude foru∗ = 5, τ∗w = 5.1, J = 1.5× 106 andn = 0.41

andu∗ = 5. It shows negligible velocity values in a region between the interface and the tube wall, which defines the
mass deposited region. Also, it can be observed that the highest velocities occur inside the bubble, as expected. Figures
(3)- (8) show the strain rate and shear stress forJ = 1.5 × 106 andn = 0.41, for three different dimensionless inlet
velocities,u∗ = 1, 5 and 10. These cases correspond to a dimensionless shear stress at wall, far away the bubble front,
equal toτ∗w = 3.2, 5.1 and 6.4, respectively.

Figure 3: Strain rate field foru∗ = 1, τ∗w = 3.2, J = 1.5× 106 andn = 0.41

It can be observed that the thickness of the film of liquid left on the wall increases as the flow rate is increased. For
each flow rate, it can be noted that the deposited liquid mass, behind the bubble front is shear-stress free, as expected.
Ahead of the bubble front, the wall shear stress becomes constant and equal to the the fully-developed flow value. Also,
in this region a plug flow zone appears near the centerline, with low strain rates values. For low flow rates the region of
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Figure 4: Strain rate field foru∗ = 5, τ∗w = 5.1, J = 1.5× 106 andn = 0.41

Figure 5: Strain rate field foru∗ = 10, τ∗w = 6.4, J = 1.5× 106 andn = 0.41

Figure 6: Stress field foru∗ = 1, τ∗w = 3.2, J = 1.5× 106 andn = 0.41
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influence of the bubble front on shear rate and shear stress is rather short. However, this region increases as the flow rate
is increased. Therefore, fully developed flow occurs at shorter distances from the bubble front for lower flow rates.

Figure 7: Stress field foru∗ = 5, τ∗w = 5.1, J = 1.5× 106 andn = 0.41

Figure 8: Stress field foru∗ = 10, τ∗w = 6.4, J = 1.5× 106 andn = 0.41

Figures (9) and (10) show the strain rate and stress field for forJ = 1.5 × 106 andn = 1, u∗ = 5 andτ∗w = 21.3.
Comparing this result with the ones show in Figs. (4) and (7), it can be observed that an increase in the behavior index
n leads to an increase of the curvature of the bubble front, and of the mass deposited. It can be observed that the strain
rates are of the same order of magnitude of the case withn = 0.41. However, asn is increased, the viscosities are higher,
which leads to higher stresses. The region of influence of the bubble front on shear rate and shear stress also seems to
increase withn.

The influence of the Jump number on flow pattern can be evaluated comparing the results shown in Figs. (11) and (12),
with the ones show in Figs. (4) and (4). Figures (11) and (12) showed the strain rate and stress field forJ = 1.5 × 103,
n = 0.41, u∗ = 1 andτ∗w = 3.2, while Figs. (4) and (4) show the result for a higher Jump number,J = 1.5 × 106.
It can be observed that Jump number almost does not affect the stress and strain rate fields. Also, the bubble shape and
influence of the bubble front seem to be unaffected by the Jump number. This result was expected, since the viscosity is
only affected by the Jump number in regions of lower strain rates, which only occur at the mass deposited region.

4.2. Amount of mass deposited results

The effects of rheological parameters and of the flow rate on the amount of mass deposited in the tube wall can
be analyzed with the aid of Figs. (13)-(15). Figure (13) shows the influence of the flow rate on the mass deposited
on tube wall. It can be observed that the mass deposited increases as flow rate is increased, until an asymptotic value.
This asymptotic value is lower than the Newtonian limit for infinite capillary numbers, which is equal to 0.6. Therefore,
viscoplasticity decreases the amount of mass deposited at the tube wall. The effect of Jump number is shown in Fig. (14).
Is can be noted that the Jump number slightly decreases the amount of mass deposited at wall. This result also shows that
the efficiency of the liquid displacement process is increased by viscoplasticity. Finally, the effect of the behavior index
can be analyzed with the aid of Fig. (15). The mass deposited increases withn until an asymptotic value, that is equal to
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Figure 9: Strain rate field foru∗ = 5, τ∗w = 21.3, J = 1.5× 106 andn = 1

Figure 10: Stress field foru∗ = 5, τ∗w = 21.3, J = 1.5× 106 andn = 1

Figure 11: Strain rate field foru∗ = 1, τ∗w = 3.2, J = 1.5× 103 andn = 0.41
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Figure 12: Stress field foru∗ = 1, τ∗w = 3.2, J = 1.5× 103 andn = 0.41

Figure 13: Mass fraction deposited at tube wallversus u∗ for J = 1.5× 106 andn = 0.41

Figure 14: Mass fraction deposited at tube wallversus J for n = 0.41 andu∗ = 1
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Figure 15: Mass fraction deposited at tube wallversus n for J = 1.5× 106 andu∗ = 5

the Newtonian value. Its worth mentioning that whenn = 1, the viscosity model is similar to the Bingham model with a
constant viscosity plateau when the stress is below yield stress.

5. Final Remarks

In this work, the displacement of viscoplastic fluids by air inside tubes was analyzed numerically. The main goal
was to obtain the amount of liquid left behind, adjacent to the wall, for different flow and rheological parameters. Larger
amounts of liquid deposited at the tube wall mean lower displacement efficiencies. The results were obtained for unsteady
and low Reynolds number flow. The governing conservation equations were discretized via the finite volume technique,
using the volume of fluid method to model the multiphase flow. The viscoplastic behavior of the liquid was modeled by
the Generalized Newtonian Liquid constitutive equation, using the SMD viscosity function. Velocity, strain rate and stress
fields, and the amount of mass left attached to the wall, were obtained for different combinations of flow and rheological
parameters. It was observed that the thickness of the film of liquid left on the wall increases with the behavior index,
reaching as asymptotic value equal to the Newtonian one, asn goes to one. The amount of mass deposited also increases
asymptotically as the flow rate is increased. It was also shown that the amount of mass deposited decreases as the jump
number increases, but the Jump number effect is rather small.
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